
1

Armstrong State University
Engineering Studies

MATLAB Marina – Curve Fitting Exercises

1. Briefly explain how curve fitting can be used to estimate unknown values in a set of data.

Briefly explain when the estimated values from curve fitting are likely to be more accurate
than estimates from interpolation. Briefly explain two other uses of curve fitting besides
estimating unknown values in a set of data.

2. Write a MATLAB program that will:
• Determine the best fit polynomial functions of degree 1, 3, and 5 for the data generated

by the MATLAB code segment of Figure 1.

• On the same axes in a figure window, plot the original data using blue circles for the
points (no line), plot the best fit polynomial functions using a green solid line for the
degree 1 polynomial function, a red solid line for the degree 3 polynomial function, and
a cyan solid line for the degree 5 polynomial function. Use the same time vector,
tnoisy, to evaluate the best fit polynomial functions for the plot. Appropriately title
and label your plot.

• Determine the sum of squared error for each of the fitted curves.
3. Write a MATLAB program that will:

• Load measured capacitor voltages from a RC circuit from the Microsoft Excel file
capVoltage.xlsx.

• Estimate the value of the capacitor voltage at 0.065t = seconds.
• Extrapolate the value of the capacitor voltage at 0.3t = seconds.
• Determine the best fit polynomial function describing the capacitor voltage.
• Use the best fit polynomial function describing the capacitor voltage to estimate the

value of the capacitor voltage at 0.065t = seconds and at 0.3t = seconds.
• Plot the original capacitor voltage data and the best fit polynomial function describing

the capacitor voltage on the same axes. How well does the best fit polynomial function
match the measured capacitor voltage data?

Last modified Thursday, November 13, 2014

This work by Thomas Murphy is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

tnoisy = [0.0: 0.25 : 10.0];
noise = 0.0 + (0.5 - 0.0)*rand(1,length(tnoisy));
fnoisy = 5*tnoisy.*exp(-0.5*tnoisy) + noise;

Figure 1, MATLAB Code Segment to Generate Noisy Data

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

